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DYNAMIC ANALYSIS OF INTERACTING COPLANAR CRACKS

IN A HALF SPACE WITH A CLAMPED BOUNDARY CONDITION

USING BOUNDARY INTEGRAL EQUATIONS

UDC 539.3V. Z. Stankevich,1 B. M. Stasyuk,2 and O. M. Khai3

The three-dimensional dynamic problem of coplanar circular cracks in an elastic half-space with a
clamped boundary condition is considered. The crack faces are subjected to harmonic loads. The
problem is reduced to a system of two-dimensional boundary integral equations of the type of the
Helmholtz potential for unknown discontinuities in the displacements of the opposite faces of the
cracks. The stress intensity factors at the crack contours are obtained and discussed.
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Introduction. It is well known that the strength of real bodies depends heavily on the presence of structural
defects such as cracks and inclusions, which are often stress concentrators. In studies of the stress–strain state of
bodies with defects, particular attention is paid to the inertia effects caused by dynamic loads. Thus, in the case of
infinite and semi-infinite bodies with cracks under harmonic and impact loading, the stress concentrations arising
near the defects can far exceed the static values [1–4]. The above-mentioned effects are also influenced by the
presence of the outer surface of the body [5–7]. One of the effective methods for solving dynamic problems of three-
dimensional theory of elasticity is the method of boundary integral equations (BIE) [8–13]. In the present paper,
the BIE method is used to study the inertia effects near the contours of circular cracks in a half-space subjected to
harmonic loads with a clamped boundary condition.

Formulation of the Problem. We consider an isotropic elastic half-space whose boundary surface S0 is
clamped. The half-space contains K plane circular cracks of radius a, which occupy regions Sk (k = 1,K) and are
at equal depths d = |O0O1| in a plane perpendicular to the boundary S0. The opposite faces of the cracks S±k are
loaded by self-equilibrated harmonic tearing forces

N+
3k(xk, t) = −N−

3k(xk, t) = N3k(xk) exp (−iωt) (k = 1,K),

where ω is the frequency of the applied force, t is time, N3k(xk) is the amplitude of the force, and i =
√
−1. The

opposite crack faces are not in contact. This condition can be satisfied if additional tensile forces are applied at
infinity. We choose local Cartesian coordinate systems Okx1kx2kx3k (k = 0,K) in such a manner that the domain
x30 6 0 corresponds to the half-space and the planes Okx1kx2k contain the crack domains Sk (Fig. 1).

Since the loads vary harmonically in time, all characteristics of the wave field in the body vary with fre-
quency ω. The problem of determining the stress–strain state of the half-space with defects reduces to the differential
equation

ω−2
1 ∇(∇ · u)− ω−2

2 ∇× (∇× u) + u = 0 (1)
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Fig. 1. Geometry of the problem.

subject to the boundary conditions

uj(x0) = 0, x0 ∈ S0, j = 1, 3,
3∑

j=1

σj3k(xk) cos (x3k, xjk) = N3k(xk), xk ∈ Sk, k = 1,K, (2)

N1k(xk) = N2k(xk) = 0, k = 1,K.

Here u(u1, u2, u3) and σj3k are the amplitudes of the displacement vector and stress-tensor components, respectively,
∇ = ∇(∂/∂x1, ∂/∂x2, ∂/∂x3), ωj = ω/cj (j = 1, 2), and c1 and c2 are the propagation velocities of the longitudinal
and transverse waves, respectively, such that c2

2 = γ2c2
1, where γ2 = (1− 2µ)/(2(1− µ)) (µ is Poisson’s ratio).

Construction of the Solution. We denote the coordinates of the point xk in the kth coordinate system by
x1k, x2k, and x3k (k = 0,K) and the coordinate of the same point xkn in the nth coordinate system by x1kn, x2kn,
and x3kn (n = 0,K). The following relations hold:

x1kn = x1k, x2kn = dkn cos (dkn, x2k) + x2k, dkn = |OkOn|, n, k = 1,K.

According to the superposition principle, the displacements at an arbitrary point of the body are equal to
the sum of the displacements uj0 (j = 1, 3) from the half-space boundary S0 and the displacements ujk produced
by opening of the opposite faces S±k of the cracks:

uj(x0) = uj0(x0) +
K∑

k=1

[δj1u2k(xk0) + δj2u3k(xk0) + δj3u1k(xk0)].

Here δji is the Kronecker symbol and the displacements ujk(xk) are written in the form of integral representations [8]

ujk(xk) = −
∂P

(1)
3k

∂xjk
+ (1− δj3)

[
2

∂P
(2)
3k

∂xjk
+

∂P
(2)
jk

∂x3k

]
+

2
ω2

2

∂

∂xjk

3∑
m=1

[
δm3∆k + (1− δm3)

∂2

∂x3k ∂xmk

] 2∑
l=1

(−1)l+1P
(l)
mk, k = 0,K, (3)

where ∆k =
∂2

∂x2
1k

+
∂2

∂x2
2k

is a two-dimensional Laplace operator, P
(l)
jk (xk) =

∫∫
Sk

∆ujk(ξ)Φl(xk, ξ) dSξ (j = 1, 3,

l = 1, 2) are Helmholtz potentials, Φl(xk, ξ) =
exp (iωl|xk − ξ|)

|xk − ξ|
, and |xk − ξ| =

[ 2∑
n=1

(xnk − ξn)2
]1/2

.

The unknown densities ∆ujk (j = 1, 3, k = 1,K) of the potentials P
(l)
jk (xk) characterize the discontinuities

in the displacements of the opposite faces of the cracks in the direction Okxjk:

∆ujk(xk) = (u+
jk(xk)− u−jk(xk))/(4π);

the densities ∆uj0 characterize the displacements of points of the half-space boundary. The radiation conditions
at infinity are satisfied identically for the displacement representations (3). We note that for the crack location
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and loading conditions described above, the only nonzero discontinuities are the discontinuities in the normal
displacements ∆u3k (k = 1,K).

Defining the stresses near cracks by Hooke’s law and taking into account boundary conditions (2), we reduce
the basic problem of the dynamic theory of elasticity to the following system of K two-dimensional boundary
integral equations of the type of the Helmholtz potentials for the unknown densities ∆u3k [9]∫∫

Sk

∆u3k(ξ)
|xk − ξ|5

L(xk, ξ) dSξ +
K∑

n=1

(1− δnk)
∫∫
Sn

∆u3n(ξ)
|xnk − ξ|5

L(xnk, ξ) dSξ

+ 2
K∑

n=1

∫∫
Sn

∆u3n(ξ)

∞∫
0

τR2(τ)
T (τ)

Ω(xnk, ξ, τ) dτ dSξ =
ω2

2

4G
N3k(xk, ω), k = 1,K. (4)

Here |xnk − ξ| = [(2dnk − x1nk − ξ1)2 + (x2nk − ξ2)2]1/2 and G is the shear modulus of the material. The kernels
L(xnk, ξ) and Ω(xnk, ξ, τ) are given by

L(xnk, ξ) =
2∑

m=1

(−1)m+1Vm(|xnk − ξ|) exp (iωm|xnk − ξ|),

Vm(z) = 9− 9iωmz − (5ω2
2 − ω2

m)z2 + iωm(2ω2
m − ω2

2)z3 + δ1m(2ω2
1 − ω2

2)2z4/4,

Ω(xnk, ξ, τ) =
2∑

m,l=1

(−1)m+1 exp [−b1Rm(τ)− b2Rl(τ)][δ1mδ1lΩ0 + (1− δml)Ω1 + δ2mδ2lΩ2],

Ωk = [µω2
2/(2(1− µ))]2−k(τ/b3)kJk(τb3), k = 0, 2,

T (τ) = R1(τ)R2(τ)− τ2, Rj(τ) =
√

τ2 − ω2
j , j = 1, 2,

b1 = |d− x1nk|, b2 = |d− ξ1|, b3 = |x2nk − ξ2|.

Here Jk(y) is a Bessel function of the kth order and a real argument. The infinite integral in these equations refers
to the boundary conditions at the infinite boundary S0 of the half-space. A distinctive feature of the equations
obtained is that the integration is performed only over the finite domains of the cracks Sk, which is essential for
numerical solution.

The first term in (4) contains singularities. One can easily verify this by letting ω1 and ω2 tend to zero and
expanding the kernel L(xk, ξ) in a series:

L(xk, ξ)
|xk − ξ|5

=
1

|xk − ξ|3
+

Aω2
2

|xk − ξ|
+ F (xk, ξ).

Here F (xk, ξ) = L(xk, ξ)/|xk − ξ|5 − 1/|xk − ξ|3 − Aω2
2/|xk − ξ| and A = (1 − µ)(3 − 4γ2 + 3γ4)/4. Thus, the

BIE (4) contain strong singularities of the form |xk − ξ|−3 and belong to the class of hypersingular equations. It is
known [8] that the unique solutions of these equations exist in the class of functions that vanish at the contours of
the domains Sk. To construct a regular analog of BIE (4), we write the densities as [8]

∆u3k(ξ) =
√

a2 − ξ2
1 − ξ2

2 Ψ3k(ξ), k = 1,K, (5)

where Ψ3k(ξ) are continuously differentiable functions in the domains Sk. The representations (5) satisfy the
condition the displacements are continuous in passing through the crack contours. Bearing the foregoing in mind,
we regularize the first term in Eqs. (4) as [10]∫∫

Sk

∆u3k(ξ)
|xk − ξ|5

L(xk, ξ) dSξ =
2∑

l=0

1
l!

2−l∑
i=0

1
i!

[I3
li(xk)− I3ε

li (xk)]
∂l+iΨ3k(xk)
∂xl

1k ∂xi
2k

+ Aω2
2 [I1

00(xk)− I1ε
00(xk)]Ψ3k(xk) +

∫∫
Sε

k

√
a2 − ξ2

1 − ξ2
2 L(xk, ξ)

|xk − ξ|5
Ψ3k(ξ) dSξ.
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Fig. 2. Frequency dependences of K∗
I on the circumferential coordinates of a point inside the crack

contour for d = 1.3a, d12 = 3.0a, and ϕ = 0 (1), 90◦ (2), 180◦ (3), and 270◦ (4).
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Fig. 3. Frequency dependences of K∗
I at fixed points of the crack contour on the depth of crack

location and intercrack spacing: (a) ϕ = 0, d12 = 3.0a, and d = 1.2a (1), 1.3a (2), and 1.4a (3);
(b) ϕ = 90◦, d = 1.4a, and d12 = 2.4a (1), 4.0a (2), and 5.0a (3).

The integrals In
li(xk) are given by

In
li(xk) =

∫∫
Sk

(ξ1 − x1k)l(ξ2 − x2k)i

|xk − ξ|n
√

a2 − ξ2
1 − ξ2

2 dSξ

and evaluated in analytic form [8]. The integrals Inε
li (xk) differ from In

li(xk) in that the integration domain Sε
k is

obtained from Sk by eliminating of a circle of arbitrarily small radius ε centered at the point ξ = xk. These integrals
are evaluated numerically.

After the regularization, the BIE (4) reduce to a system of linear algebraic equations for unknown discrete
values of the functions Ψ3k(ξ). The circular domains of the cracks Sk are discretized in the polar coordinate system
Okrϕ using rectangular boundary elements within which the discrete values of Ψ3k(ξ) are assumed to be constant.

Numerical Results. As an example, we consider two cracks subjected to tearing forces of constant ampli-
tude N3k(xk) = N0 (k = 1, 2). The crack domains are discretized using 11 points in the radial direction r and 16
points in the circumferential direction ϕ. Poisson’s ratio of the material is equal to 0.3. To evaluate the infinite
integrals in the BIE (4), we divide the integration interval (0,∞) into the intervals (0, ω1), (ω1, ω2), and (ω2,∞)
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with the corresponding radiation conditions by choosing the branches of the radicals Rj(τ) (j = 1, 2). Since the
function T (τ) has a real root in the interval (0, ω1), we regularize this integral in the interval before evaluation.

Using the solutions Ψ3k(r, ϕ, ω), we obtain the mode I stress intensity factors at the crack contours

KIk(a, ϕ, t) = −2Gπ
√

πa

1− µ
Ψ3k(a, ϕ, ω) exp (−iωt), k = 1, 2.

Figures 2 and 3 show the normalized amplitudes K∗
I = |KI|/Ks

I (Ks
I = 2N0

√
a/π is the static mode I stress

intensity factor for a crack in an infinite body subjected to forces N0) versus the cyclic frequency ω2a. One can
see that in the examined range of the parameter ω2a, the amplitudes K∗

I increase monotonically from the static
values for ω2a = 0 to the maximum value and then decrease monotonically. The location of the points of the crack
contours at which the amplitudes attain maximum values depends strongly on the depth of crack location and the
intercrack distance. For a fixed distance between the defects d12, the values of K∗

I at the points of the crack contours
the closest to the half-space boundary decrease somewhat with decrease in the depth of crack location (see Fig. 3a).
This indicates that the rigid clamping of the half-space boundary leads to strengthening of the half-space compared
to the case of a free boundary [14]. For example, for ω2a = 1.5, d = 1.2a, d12 = 3a, and ϕ = 0, we have K∗

I = 1.45
and 1.56 for half-spaces with clamped and free boundaries, respectively. In the case of a single circular crack, these
values are equal to 1.35 and 1.62, respectively, and for an infinite body, the amplitude is 1.51 [4]. As the distance
between the cracks decreases, the dependence of the maximum amplitudes KI on the distance has a wavy nature
(see Fig. 3b).This effect is also observed for infinite [2, 3, 10] and semi-infinite [14] bodies with cracks subjected to
harmonic loads. As the depth of defect location increases, the values of K∗

I tend to those in an infinite body.
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